Progress Towards Traceable Nanoscale Optical Critical Dimension Metrology for Semiconductors
نویسندگان
چکیده
Non-imaging optical critical dimension (OCD) techniques have rapidly become a preferred method for measuring nanoscale features in semiconductors. OCD relies upon the measurement of an optical reflectance signature from a grating target as a function of angle, wavelength and/or polarization. By comparing the signature with theoretical simulations, parameters of the grating lines such as critical dimension (CD) linewidth, sidewall angle, and line height can be obtained. Although the method is sensitive and highly repeatable, there are many issues to be addressed before OCD can be considered a traceable metrology. We report on progress towards accurate, traceable measurement, modeling, and analysis of OCD signatures collected on the NIST goniometric optical scatter instrument (GOSI), focusing on recent results from grating targets fabricated using the single-crystal critical dimension reference materials (SCCDRM) process. While we demonstrate good correlation between linewidth extracted from OCD and that measured by scanning electron microscopy (SEM), we also find systematic deviations between the experimentally obtained optical signatures and best fit theoretical signatures that limit our ability to determine uncertainty in OCD linewidth. We then use the SCCDRM line profile model and a χ goodness-of-fit analysis on simulated signatures to demonstrate the theoretical confidence limits for the grating line parameters in the case of normally distributed noise. This analysis shows that for the current SCCDRM implementation, line height and oxide layer undercut are highly correlated parameters, and that the 3-σ confidence limits in extracted linewidth depend on the target pitch. Prospects for traceable OCD metrology will be discussed.
منابع مشابه
Wafer-level and Mask Critical Dimension Metrology
The principal productivity driver for the semiconductor manufacturing industry has been the ability to shrink linear dimensions. A key element of lithography is the ability to create reproducible undistorted images, both for masks and the images projected by these masks onto semiconductor structures. Lithography as a whole, fabricating the masks, printing and developing the images, and measurin...
متن کاملElectronics and Electrical
(EEEL) encompass nearly all key disciplines in electrical, electronic, electromagnetic, and electro-optic materials; components; instruments; and systems, with an emphasis on metrology. The Laboratory has laboratories in Gaithersburg, Maryland and Boulder, Colorado; its annual budget is approximately $80 million. EEEL's programs encompass measurements and related research in the following areas...
متن کاملOptical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction.
A significant challenge in the development of chip-scale cavity-optomechanical devices as testbeds for quantum experiments and classical metrology lies in the coupling of light from nanoscale optical mode volumes to conventional optical components such as lenses and fibers. In this work we demonstrate a high-efficiency, single-sided fiber-optic coupling platform for optomechanical cavities. By ...
متن کاملScatterometry reference standards to improve tool matching and traceability in lithographical nanomanufacturing
High quality scatterometry standard samples have been developed to improve the tool matching between different scatterometry methods and tools as well as with high resolution microscopic methods such as scanning electron microscopy or atomic force microscopy and to support traceable and absolute scatterometric critical dimension metrology in lithographic nanomanufacturing. First samples based o...
متن کاملAnalysis of Frequency Leakage in Different Optical Paths of Nano-Metrology Systems Based on Frequency-Path Models
The drawing of frequency-path (F-P) models of optical beams is an approach for nonlinearity analysis in nano-metrology systems and sensors based on the laser interferometers. In this paper, the frequency-path models of four nano-metrology laser interferometry systems are designed, analyzed and simulated, including ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008